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Traditional configurations for mounting Temperature–Humidity (TH) sensors

on multirotor Unmanned Aerial Systems (UASs) often suffer from insufficient

radiation shielding, exposure to mixed and turbulent air from propellers, and

inconsistent aspiration while situated in the wake of the UAS. Consequently,

atmospheric boundary layer profiles that rely on such configurations are bias-

prone and unreliable in descent. This thesis describes the evolution of a novel

sensor housing design over three iterations. The sensor housing is designed to

shield airborne sensors from artificial heat sources and artificial wet-bulbing while

pulling air from outside the rotor wash influence. The housing is mounted above

the propellers to exploit the rotor-induced pressure deficits that passively induce

a high-speed laminar airflow to aspirate the sensor consistently. Our design is

modular, accommodates a variety of other sensors, and would be compatible

with a wide range of commercially available multirotors. Extensive flight tests

conducted at three field campaigns with altitudes up to 500 m Above Ground Level

(AGL) show that the housing facilitates reliable measurements of the boundary

layer phenomena and is invariant in orientation to the ambient wind, even at high

vertical/horizontal speeds (up to 5 m/s) for the UAS. A low standard deviation

of TH measurements shows a good agreement between the ascent and descent

profiles and proves our unique design is reliable for various UAS missions.
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Chapter 1

Introduction

The lower portion of atmosphere up to 1.5 km Above Ground Level (AGL) is called

Atmospheric Boundary Layer (ABL). High-resolution profiles of the ABL are criti-

cal for obtaining measurements important for a range of microscale and mesoscale

phenomena. Observations of atmospheric parameters in ABL enables weather fore-

casting, numeric weather prediction, severe-weather predictions, climate change

research etc. These profile measurements are conventionally performed using

ground-based balloon launches [17, 38] and parachute-based dropsondes [16].

However, these methods are insufficient for targeted and controlled ABL research

and lack spatial and temporal resolution for detection of micro-scale changes in

atmosphere.

Recent technological advancements have enabled the use of Unmanned Aerial

Systems (UASs) to perform targeted, controlled, and frequent profiles using fixed

wings [10] and multirotors [4, 18]. Both fixed-wing and multirotor UASs offer

distinct advantages over passive balloon and parachute systems in terms of the

ease, frequency, and spatiotemporal resolution of observations. More specifically,

multirotors have flight profiles that allow easy operation, a geometry that offers

convenient placement for a variety of sensors, and a payload capacity that even

permits heavier sensors (ultrasonic anemometer, particle counter, aerosol sensor,
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etc.) to be airborne. Furthermore, their relatively small launch/land footprint

makes them suitable for use in remote locations without the need for runways [24].

As a result, their use for a variety of profiling applications such as the measurement

of Temperature–Humidity (TH) data [6, 12], wind-estimation [35, 34, 33, 31], air

quality measurements [40, 41], etc. has increased significantly in recent years.

This thesis develops the housing for TH measurement, which is shown mounted

and fully assembled on a multirotor in Figure 1.1. This housing outperforms

traditional mounting configurations for TH sensors (underneath the body, under

the propeller-arm, etc. described in Section 3.2, and Table 3.1) in terms of data

consistency, correctness, and reliability. The performance improvements of the

housing come from mitigating three primary sources of measurement errors of a

TH sensor mounted on a multirotor:

• Error/uncertainty due to sensor response time.

• Measurement error due to solar radiation (insolation).

• Undesirable mixing of sample air.

This mitigation is the result of pulling air through the housing sourced away from

UAS-disturbed airflow while maintaining a high airflow speed. Furthermore, the

modular and light-weight design makes it convenient to set up in the field and

adaptable to a range of UASs and sensors. The housing system imposes minimal

constraints on regular flight operations.

Obtaining a precise air temperature is particularly challenging as uncertainties

can arise from multiple sources such as the diameter of the sensor, the airflow

speed for aspiration, the sensor self-heating, the sensor response time, etc. [8, 9].

Additionally, undesired mixing in the air, such as that of the propeller flow field,
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Figure 1.1: A field trial of sensor housings mounted on a DJI M600 Pro UAS using
the square carbon-fiber tube support structure.

can cause a misrepresentation of the observation level or an undesired smoothing

of atmospheric features. As a result, the quality of the measurements made by the

sensor is also extremely dependent on its placement on the UAS’s body [14, 23] and

aspiration speed [19]. TH sensors are particularly sensitive to a lack of aspiration

and inadequate shielding from insolation and precipitation, the latter of which

can cause erroneous wet-bulbing. A TH sensor mounted underneath the rotor

of the multirotor, for example, can introduce bias into its measurements due to

insolation, compressional, and frictional heating [14, 13]. The sensor will also have

inconsistent aspiration due to rotor turbulence [39, 43]. Moreover, because the air

beneath the rotors originates from the area above the aircraft, observations using

traditional mounting have uncertainty in the actual observation level. These biases

are particularly acute in descent profiles, making it extremely difficult to ensure the

minimum vertical resolution to accurately capture atmospheric phenomena [15].

Consequently, several TH-measurement approaches rely only on the ascent

data [27, 26, 15] while using only minimal measures to shield the sensor. Ideally,

placing the sensor farther away from the body of the UAS increases the validity
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of the recorded observations [41]. Although many different probes for air/gas

parameter measurement exist where the flow is sucked inside a tube [5]; our

method does not rely on vacuum pump/atmospheric wind to induce the flow. We

use an expander-reducer strategy to exploit the low-pressure region on top of the

propeller to induce a high-speed flow that satisfies the requirements of TH sensors.

However, doing so requires a careful design of a sensor housing that fulfills all the

requirements of sensors and UAS and still maintains reasonable margins of safety

for UAS flight operations.

In this thesis, we present a novel housing design for mounting TH sensors that

not only ensures environmental shielding but also provides consistent aspiration

throughout the mission despite the changes in airflow field around the UAS. Our

design innovation ensures that measurements are taken from the air far away

from the body of the aircraft and near the actual observation level. The housing

passively uses the suction induced by the propellers to create a high-speed laminar

flow inside the sensor housing tube.

We present our results from various field deployments in Oklahoma, Nebraska

and Colorado, USA. Our evaluations focus on three fundamental contributions of

the design: (1) reliable temperature–humidity sensor readings during both ascent

and descent in vertical profiling missions at varying speeds; (2) invariance of

the orientation of the housed sensors to ambient wind (or lack thereof); and (3)

the ability to capture atmospheric phenomena (such as an inversion layer) when

compared to a radiosonde. We note that, although wind measurement is one of

the parameters of interest in ABL studies, our sensor housing is not designed

for atmospheric wind measurement. Our primary research goal is acquiring

accurate temperature-humidity measurements using the proposed sensor housing.

However, based on the findings of the thesis, we have noted the importance of
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on-board wind measurements in the discussion of future work.

The rest of this thesis is organized as follows: Related Works are discussed

in Chapter 2, Chapter 3 details the requirement of the system and the designed

system, Chapter 4 discusses the evolution of the sensor housing with detailed

description of each stage, Materials and Methods to evaluate the sensor housings

are presented in Chapter 5. In Chapter 6, the Results are presented, followed by a

Discussion of the results in Chapter 7 and the Conclusion in Chapter 8.

1.1 Contributions

Parts of this thesis is published in [20, 23], where we investigated two new sensor

housing configuration and one traditional multirotor sensor mounting method. We

participated in two flight campaigns (Appendix A.3): Stillwater, Oklahoma, 2018,

and Wilber, Nebraska, 2018- to evaluate those three sensor housing configurations.

Also, in parts of this thesis published in [22] we evaluated an improved housing

configuration. We participated in a six day long flight campaign in San Luis Valley,

Colorado, to evaluate the performance of this sensor housing. The field campaign

is named Lower Atmospheric Process Studies at Elevation—a Remotely-piloted

Aircraft Team Experiment (LAPSE-RATE) flight campaign conducted as part of

the 2018 annual meeting of the International Society for Atmospheric Research

using Remotely-piloted Aircraft (ISARRA) [21]. Based on the results from this

field campaign, further optimization on the design is made to improve UAS flight

stability.

In summary, over three iterations of the design, we developed and field-tested

a sensor housing for TH sensors that:

• Has consistent airflow to facilitate fast and consistent sensor response time.
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• Has low thermal mass and better radiation shielding to reduce radiation

error and sensor housing response time constant.

• Samples air from a source far removed from UAS turbulence and undesired

mixing.

• Is independent of orientation relative to wind or sun.

• Provides reliably consistent measurement in both UAS ascent and descent.

• Protects the sensor from artificial heat sources and prevents artificial wet-

bulbing.

• Has foldable, modular design for fast field deployment and easy replacement.

• Is compatible with other sensors with aspiration requirements similar to TH

sensors.
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Chapter 2

Related Work

TH sensors are particularly sensitive to their placement environments. Despite

having the advantages discussed in the introduction, the airflow field of a multiro-

tor can interfere with reliable measurements of atmospheric phenomena. Sensor

housing design needs to consider the requirements of TH sensors, sensor housing

requirements, and the flow field of UAS.

Prior works on characteristic considerations of TH sensors are discussed in

Section 2.1, considerations for sensor housing and its performance criteria are

discussed in Section 2.2, flow field characteristics of a multirotor which will affect

the performance of both TH sensors and the housing is discussed in Section 2.3,

and the chapter concludes with a discussion of the current state of the art and

challenges in Section 2.4.

2.1 Considerations for TH Sensors

2.1.1 Response Time

Accurate measurement from temperature sensors is crucial for detection of atmo-

spheric phenomena. Performance of such sensors are primarily dependent on

the placement environment and can pose significant challenges to data correc-
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tion/processing if all the requirements are not met. Rodi and Spyers-Duran [37]

describe that the ability of the sensors to respond to rapid change in temperature is

dependent on the sensors, as well as the thermal mass of the housing, and housing

flow condition. McCarthy [29] describes a method for correcting the response of

temperature sensors for system response time. According to McCarthy, response

time of the system should be determined as flown to account for the response

lag of the housing and the sensor itself. Sensor response is also dependent on

the speed of the aspirating airflow. Houston and Keeler [19] show the impact

of airflow speed on the sensor response time. Sensors in a high aspirating flow

respond faster compared to low aspirating airflow. If the airflow is not consistent,

this can be very hard to take into account when correcting for sensor response

time.

2.1.2 Source of TH Measurement Errors

Podesta et al. [8, 9] describes the challenges in precision meteorology: radiation

error, sensor self-heating, sensor response time correction. According to Podesta,

the magnitude of radiation error is dependent on the sensor diameter; with small

diameter sensors having the lowest error. Although most of the modern precision

temperature sensors have a small diameter, adding radiation shielding is still

critical to minimize the radiation error.

Sensor self-heating is another factor that can introduce error in the measure-

ment. Without sufficient aspiration, the effect of sensor self-heating will be signif-

icant and can be hard to correct in post-processing. Artificial heat sources such

as motor waste heat as hypothesized by Greene et al. [14] can also introduce bias

in the measurement. According to their experiments, bias can be a few times the

specified accuracy of the sensors. Since the artificial heat sources are not consistent
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Table 2.1: Desired accuracy of TH sensors [23].

Sensor Desired Accuracy

Temperature ±0.2 ◦C
Humidity ±5.0 %RH

throughout the flight and fluctuate, they can not be calculated or taken into account

by prior experiments.

TH sensors thus need to be placed in a way that minimizes the sources of error

and thus the steps taken in post-processing to improve the quality of the TH data.

2.2 Considerations for Sensor Housing

Sensor housing must be designed to meet accuracy/precision requirements for

atmospheric missions and must consider the restrictions set forth by the environ-

ment, sensors, and UAS. Jacob et al. [23] discussed considerations for atmospheric

measurement using UAS focusing on the observed sensor response, and the effect

of orientation of the UAS. According to [23], observed sensor response during

descent is slower than that of ascent and does not pick up fine-scale changes

accurately. Data from a previous version of the sensor housing (discussed in

chapter 5) shows the dependency on the orientation of the sensor housing related

to the atmospheric wind, where if the sensor housing inlet is pointed downwind

the sensor suffers aspiration issues. Jacob et al. also discusses the desired accuracy

of TH sensors as shown in Table 2.1

The issue with UAS descent data being unreliable with the traditional mounting

method is also noted by Lee et al. [26, 27] as he describes uncertainty in UAS sensor

measurements during descent. Following this, many authors [26, 27, 15] discard

the descent data altogether. Since descent is almost half the flight time, and
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multirotors are known to have very limited battery capacity, current methods of

sensor placements are ineffective and inefficient. A sensor housing that allows the

use of both ascent and descent data would significantly increase the amount of

data collected with better spatiotemporal resolution.

Greene et al. [14] compared temperature sensor performance for multirotors at

various placement locations along the arm between two extremities of the rotor.

The sensor they tested had a radiation shield and was passively aspirated by

the UAS airflow field. Their experiment shows that the sensors are not properly

aspirated (� 5 m/s) directly underneath the motor and at the center of the UAS.

Sensors also show warm bias up to a degree Celsius directly underneath motors

and up to 0.3 degree Celsius at the center. Another key observation is that at

high aspirating airflow, sensors read values closer to the reference temperature,

and absence of aspiration causes sensors to show gradual warming drift likely

due to self-heating of the UAS and radiation shielding. Green et al. concluded

sensors placed underneath the propeller 2/3 propeller radius away from the

motor is optimum among the compared methods. However, the study did not

consider/compare placements on top of the propeller or away from the UAS body.

Hemingway et al. [15] used experimental data to determine vertical sampling

scales for UAS to capture the thermodynamic structure of atmospheric phenomena

(such as temperature, humidity). The recommended vertical sampling scale for

temperature is 3 m and humidity is 1.5 m. However, sensor placement location for

this experiment (center of the UAS) is not recommended [14], and only one ascent

speed is used (about 2 m/s) in the experiments. Furthermore, the reliability of

the experimental data is not established against any ground truth or comparable

measurements. Effect of sensor response time and ascent speed is not considered

either.
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Houston and Keeler [19] showed how sensor response and airspeed affect

the representation of a couple of common atmospheric phenomena from UAS

measured values. It is shown that the difference between ascent and actual profile

increases with sensor response time but decreases with airspeed. Increased ascent

speed also increases the error. Another important observation from the result

is that an increase in sensor response time causes unwanted smoothing of the

observed data and will seem to be lagging behind the original data.

According to findings of Villa et al. [41], air pollution measurements are more

accurate as far away from the UAS center as possible as UAS causes a ’disper-

sion’ effect and lowers the concentration measurement. The consideration of this

effect is essential for many sensors that rely on concentration measurement. For

example, if a humidity sensor relies on the moisture content of the air for accurate

measurement, mounting it in the turbulent field of UAS would give unreliable

measurements. They also note that mounting sensors farther away also adversely

affects the sensor response time, as the airflow on the sensor is very low in the

absence of prop wash. However, mounting a sensor further away would require

careful design of a sensor housing that maintains the aspiration.

Another important consideration for traditional sensor mounting for multirotor

is the shielding from radiation. The radiative error can lead to measurement errors

up to a few degrees Celsius [2] which can be worse in the absence of sufficient

aspiration.

2.3 Multirotor UAS flow field

Prudden et al. [34] measured rotor interference in a wind tunnel as a function

of rotor diameter in a simulated forward flight, and found the effect to be very
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minimal at 2.7x rotor diameter away from the motor when the sensor is directly

facing the incoming wind. However, this experiment does not verify sensors

situated downstream of the UAS.

Yoon et al. [43] and Ventura et al. [39] conducted extensive CFD simulation

of multirotor to visualize the aerodynamic field around the UAS. Based on the

simulation result, it can be seen that in the absence of wind, a sensor just outside

the UAS rotor would experience little to no turbulence. This finding agrees with

earlier literature from Villa et al. [41] in which authors experimentally measure the

wind field around the hexacopter at different measurement points. However, in

practice, the absence of wind is rarely the case; either the wind or lateral movement

of UAS would carry the disturbed airflow further downstream. A sensor mounted

downstream will be affected unless it is very far from the body, which may make

it structurally challenging to implement. Given the knowledge of aerodynamics of

the airflow, a sensor housing mounted on top of the UAS with inlet further out

will be interfered the least when it is downstream.

2.4 Current State of the Art and Challenges

Lee et al. [28] shows how the multirotor and other UASs can augment the ra-

diosonde data collected in lower ABL (up to 1.5 km AGL). Lee also discusses

the importance of assimilating fixed wing and multirotor UAS data for weather

models to improve forecasting.

Barbieri et al. [3] describes the challenges faced in comparing sensor data from

different UAS platforms. Currently, data collected using UAS does not have

any standardized mounting methods for multirotors, resulting in huge variations

among the data collected [3].
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Our recent paper [22] describes the challenges of the multirotor TH measure-

ment, and the effectiveness of sensor housing, described in this thesis, in reducing

measurement uncertainties. This thesis extends the work on the sensor housing

further with improved design focusing on UAS stability.
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Chapter 3

Requirements and Description of the System

This chapter describes the design requirements set forth by the sensors and the

UAS in Section 3.1, evaluation of sensor placement configurations that have been

considered in this thesis is detailed in Section 3.2, and the details of the system de-

scription along with the specifications for the sensors and platform configurations

during field campaigns are described in Section 3.3.

3.1 Design Requirements

The design of a sensor housing system has several fundamental requirements that

stem from the properties of the sensor and the flight characteristics of the UAS.

Requirements of the Sensor: TH sensors require sufficient aspiration, protection

from external heat sources (such as insolation and UAS waste heat), and prevention

of artificial wet-bulbing.

• Aspirating Sensors: Naturally aspirated sensors are prone to radiative heating

error [2]. The aspiration airspeed also affects the effective sensor response

times [19]. Insufficient and inconsistent aspiration speeds introduce uncertainty

in the measurement that could be impossible to deal with during quality

checks/correction of the data. Sensor manufacturers often specify the sensor



www.manaraa.com

15

response time in the presence of constant airflow. For instance, a nominal

5 m/s airflow is used for the response time of 1 s for iMet sensors (Table 3.2).

However, when mounted on a system, the response time of the system could

change based on the aspiration method and should be determined as flown [29].

• Shielding from Heat Sources: The sensors need to be protected from solar

radiation and other heat sources such as the waste heat produced by the

battery and motors and absorbed heat from solar radiation by the body of the

UAS. Failure to do so will result in biased measurements, which can worsen

the longer a UAS-mounted sensor is airborne. Having a sufficiently aspirated

housing and proper placement of the sensor will reduce/eliminate the effect

of these biases.

• Preventing Artificial Wet-Bulbing: The sensor housing needs to shield the sensor

from precipitation and should not allow water to accumulate on the sensors.

The accumulation of liquid water on the sensor can produce incorrect mea-

surements of the temperature by the wet-bulbing effect. If the humidity sensor

package is dependent on the temperature sensor for corrections, this will also

skew the humidity measurements by an undesired saturation.

Requirements of the UAS: The general requirements from the perspective of the

UAS are that the weight and size of the housing must be within the bounds of the

UAS’s payload capacity. At the same time, the placement of the housing must not

hinder safe and normal operations of the UAS.

• Payload Capacity: The sensor housing and its mounting fixtures must not

exceed the rated payload capacity of the aircraft. A higher payload weight
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also reduces the total flight time, thereby limiting the type of mission the

UAS will be capable of performing.

• Flight Dynamics: The housing must not prevent the UAS from doing its

normal maneuvers and must remain in safe operating conditions. Adding

the sensor housing must not severely disrupt the balance of the UAS.

3.2 Evaluation of Sensor Placement Configurations on the UAS

The different sensor configurations considered in the thesis are shown in Figure 3.1

and summarized in Table 3.1. One approach to placing the sensor would be to

mount it directly underneath the propeller (configuration 1) to meet the aspiration

requirements, but the flow field of a propeller is turbulent [39, 43] and the resulting

aspiration is unsteady. Sensors in this configuration can show bias due to frictional

and compression heating by propellers and motor waste heat [14, 13]. Also,

airflow passing across the sensor originates from a large area above the UAS [39],

making the location of actual measurements uncertain. Alternatively, the sensor

can be placed on top of a propeller (configuration 4) where the air is relatively

unmixed, and the flow is comparatively laminar. However, as the UAS descends

into turbulent and mixed air created by its propeller, this sensor configuration

will be in the wake of the UAS, will be measuring data from an uncertain/mixed

source, and will potentially experience uncertain aspiration if obstructed by the

UAS body. Moreover, the resulting aspiration might be insufficient and unreliable

as the airflow speed is dependent on the propeller dimension and relative distance

from the motor.

Another popular mounting method is configuration 2, as seen in [26]. Insuffi-

cient aspiration is also a potential issue if the UAS is to be used in a similar config-
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1
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4

5

7 6

Sensor Position
Air Flow Direction

Figure 3.1: A schematic of the different Sensor Placement Configurations: 1
Direct Downwash, 2 Over the UAS, 3 Under the UAS, 4 Direct Upwash,

5 Downwash housing, 6 Upwash Housing with Inlet Pointed Inside, and 7
Upwash Housing with Inlet Pointed Outside.

Table 3.1: A comparison of the different sensor configurations: Xthe availability of
aspiration for temperature–humidity (TH) and atmospheric shielding.

No. Configuration Temperature Humidity Shielding Comments

1 Direct Downwash X X x Mixed air; reading is
especially unstable during descent

2 Over the UAS x x x Insufficient aspiration

3 Under the UAS x x x Mixed air and insufficient aspiration

4 Direct Upwash X X x Possibly insufficient aspiration

5 Downwash housing X X X Mixed and turbulent Air

6
Upwash Housing with

X X X
Air source is in

Inlet Pointed Inside the wake of the UAS

7
Upwash Housing with

X X X
Air is sourced outside

Inlet Pointed Outside of the UAS interference

uration as a radiosonde-weather-balloon where the sensor is passively mounted

above or hanging from the UAS (configurations 2 and 3), as the airflow speed

decreases drastically towards the center of the UAS [41]. Any sensor mounted

outside of the housing (configurations 1–4) due to the lack of shielding also runs

the risk of bias from insolation or erroneous wet-bulbing. The sensor mounted

inside a horizontal cylinder in configurations 2 and 4 could provide radiation

shielding and, in some cases, provide sufficient aspiration (only if the atmospheric

wind speed/horizontal velocity of the UAS is high and in a specific orientation),

but this will limit the use case of the multirotor in ABL measurements. Both of the
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configurations will still be in the wake of the UAS during descent, hence adding

uncertainty to the observations during descent.

Sensors inside the housing, as shown in Figure 3.1 (corresponding to configura-

tions 5–7), will be shielded from radiation and would maintain sufficient aspiration.

Configuration 5 will have turbulent air and potential aspiration issues during de-

scent. Configuration 6 (even though it is better than configuration 5) could be

subjected to waste heat of the UAS body, and its air source will be in the wake

of UAS during descent. Considering an extensive evaluation of configurations

1–6 in our previous effort [23, 20], along with the fact that a sensor placed in

configuration 7 will sample the air that is significantly less interfered by the UAS,

configuration 7 would be the best choice.

Aspirating air flow through the housing could be induced using active or

passive air draw. The active draw of air will require additional hardware like a

fan, a battery, and associated electronics [13]. This also does not utilize what is

already available in a UAS, i.e., the wind field from the propellers. Additional

hardware will also make the housing heavier and will reduce the flight time of the

UAS. Using the propeller of the UAS to draw air passively can facilitate a similar

(or better) performance with less payload.

Since for the housing in configuration 7 the air source is far from the center

of a multirotor, the extension has the potential to compromise the stability of the

UAS by introducing an extra moment on one arm. To balance the moment, we

choose to mount a second housing in a symmetric configuration on the opposite

arm. We note that this may make the UAS less responsive to control inputs in the

roll/pitch axis.

Based on the above design considerations, this thesis uses symmetric configu-

ration 7 for sensor housing (with passive air draw), as seen in Figure 1.1. As for
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comparison against sensors without sensor housing, we choose configuration 3.

3.3 System Description

The primary components of the housing system, as shown in Figure 1.1, are

the UAS, Data Acquisition System (DAQ), sensors, sensor housing, and support

structure for sensor housing.

UAS: The UAS configuration is a “DJI Matrice 600 Pro” hexacopter platform

equipped with a “DJI A3 Pro” flight control system. The dimensions of the system

are 1668 mm × 1518 mm × 727 mm with propellers, frame arms, and a GPS mount

unfolded (including landing gear). The maximum takeoff weight of the UAS is 15.5

kg (the maximum recommended payload is 5.5 kg) with a flight endurance of 35–40

min on a single set of six “DJI TB48S” batteries with no load. The manufacturer

specified positioning accuracy is vertically ±0.5 m and horizontally ±1.5 m [1].

The maximum ascent and descent speeds are 5 m/s and 3 m/s respectively.

DAQ: All the experimental data are obtained and recorded onboard the UAS by an

Odroid XU4 [32], which is a compact single-board computer with eight processing

cores and 2 GB of RAM. The Odroid runs a Robot Operating System (ROS) [36]

node that communicates with the autopilot on the UAS to collect the position,

velocity, altitude, attitude, and other control information. It also interfaces with

the TH sensors to obtain temperature and humidity measurements. Different ROS

nodes collect data independently of each other and record the timestamp of when

the ROS node collected the data and when the ROS core received the data, which

simplifies the synchronization between the different sources of data nodes. A

wireless serial interface to the Odroid (over 2.4 GHz Xbee radios) allows two-way

communication from a ground station, which is also useful for debugging and
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periodic sanity checks. The raw data file, recorded by the ROS, is retrieved over an

ethernet connection and post-processed in MATLAB.

Sensors: Detailed specifications of the TH sensors used in the thesis are described

in Table 3.2. The primary sensors used for the experiments are iMet XQ2 and iMet

XQ1 from InterMet Systems (Grand Rapids, MI, USA). InterMet sensors feature

a self-contained sensor package designed for UASs that include atmospheric

pressure, temperature, and humidity sensors. These sensor units also have built-in

GPS and an internal data logger with a rechargeable battery.

Additionally, a custom two-node sensor, called nimbus-pth, designed and built

in our lab, was mounted on one of the UAS platforms. The nimbus-pth sensor

has a high precision thermistor configured in a Wheatstone bridge and is read by

a 10-bit analog-to-digital converter. The humidity sensor is an “SHT31” sensor,

while the pressure sensor is an “MS5803” sensor. For experiments involving

measurements of airflow speed inside the housing, a hot wire thermo-anemometer

“Extech SDL350” is used inside the housing. The anemometer has a specified range

of 0.2–25 m/s with a resolution of 0.01 m/s and accuracy of 5% of the reading.

The first ground truth reference used for the experiments is the instrumented

van of Colorado University, Boulder, CO named MURC (Mobile UAS Research

Collaboratory) [30]. As part of the LAPSE-RATE’2018 flight campaign intercompar-

ison of multirotor and fixed wing platforms, 13 institutions and organizations used

the measurement from the MURC tower as the ground truth to fly 35 UASs in a

similar flight pattern. The MURC has a 15.2 m extendable tower that is equipped

with Gill MetPak Pro Pressure, Temperature, Humidity (PTH) sensors. The MetPak

Pro sensor has a manufacturer-specified accuracy of (±0.1 ◦C) for temperature and

(±0.8% of RH) for humidity. The filtering process of MURC sensors are proprietary
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Table 3.2: The key specifications for the sensors used in different experiments: The
unavailable fields are left blank.

XQ2 XQ1 nimbus-pth MURC RadioSonde
(iMet XQ2) (iMet XQ1) (Custom Built) (Gill MetPak Pro) (RS92)

Te
m

pe
ra

tu
re Type Bead Thermistor Bead Thermistor Bead Thermistor pt100 1/3 Class B Capacitive Wire

Range −90 to 50
◦C −95 to 50

◦C −40 to 100
◦C −50 to 100

◦C −90 to 60
◦C

Response Time 1s @ 5 m/s 2 s 1 s <0.5 s <0.4 s @ 6 m/s flow
Resolution 0.01

◦C 0.01
◦C 0.01

◦C 0.1 ◦C 0.01
◦C

Accuracy ±0.3 ◦C ±0.3 ◦C ±0.1 ◦C 0.5 ◦C

H
um

id
it

y

Type Capacitive Capacitive Capacitive Capacitive
Range 0–100% RH 0–100% RH 0–100% 0–100% RH 0–100% RH

Response Time
@ 25

◦C, 0.6 s 5 s @ 1 m/s velocity 8 s @ 20
◦C, <0.5 s

@ 5
◦C, 5.2 s @ −40

◦C, <20 s
@ −10

◦C, 10.9 s @ 6 m/s
Resolution 0.1% RH 0.7% RH 0.01% RH 0.1% RH 1% RH
Accuracy ±5% RH ±5% RH ±2% ±0.8% 5% RH

by the manufacturer and not available.

Another ground truth used in this thesis is radiosonde balloon observation

data provided by the National Oceanic and Atmospheric Administration (NOAA).

The balloons were deployed by NOAA officials close to the UAS launching site

by following standard deployment guidelines. The sensor used in the radiosonde

is Vaisala RS92 (Vaisala Corporation, Vantaa, Finland) with a very fast response

time for both temperature (<0.4 s) and humidity(<0.5 s). The radiosonde data

presented in the thesis is corrected and filtered for sensor response lag and other

factors by proprietary Vaisala algorithms.

3.4 UAS Sensor Mounting Configuration and Payload

Mounting configurations of the sensors and UAS platforms for the three flight

campaigns are described in this section.

Oklahoma’2018:

During CLOUDMAP flight campaign of Oklahoma, one multirotor UAS platform

(Matrice 600 Pro) is used with three sensor configurations - direct downwash

(configuration 1), downwash housing (configuration 5), downwash housing with
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inlet pointed inside (configuration 6).

Sensors for all three configurations were iMet XQ1 sensors described in the

previous section.

Nebraska’2017:

Total solar eclipse campaign featured two sensor configurations with two sensors

in configuration 1 and one sensor in configuration 5.

Sensors for all three configurations were iMet XQ1 sensors described in the

previous section.

LAPSE-RATE’2018:

The sensor mounting configuration of the sensors is referred to as a configuration

number, as described in Section 3.2 and Figure 3.1. The placement configuration

of the sensors used in the experiments for each of the UAS is as follows:

UAS platform M600P1: one XQ2 (code name: P1XQ2) is mounted inside the left

sensor housing (configuration 7), and one XQ1 (code name: P1XQ1) is mounted

inside the right sensor housing (configuration 7). The alternative setup used in

some experiments replaces XQ1 with nimbus-pth (code name: P1Nimbus2) inside

the housing. An additional nimbus-pth (code name: P1Nimbus1) is also placed

under the body of the UAS without housing (configuration 3).

UAS platform M600P2: one XQ2 (code name: P2XQ2) is mounted inside the

left sensor housing (configuration 7), one nimbus-pth (code name: P2Nimbus2)

is mounted inside the right sensor housing (configuration 7), and an additional

nimbus-pth (code name: P2Nimbus1) is placed under the body of the UAS without

housing (configuration 3).

This form of sensor placement facilitates an evaluation between the sensor

placed inside the housing (configuration 7), as shown in Figure 3.2a, versus under

the body of the UAS without housing (configuration 3), as displayed in Figure 3.2b.
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(a) TH sensor inside the housing
(b) TH sensor under the UAS body without
housing

Figure 3.2: The sensor configurations used in the experiments for this thesis: The
sensor without housing is mounted without any additional radiation shielding.

For the configuration used in the experiments, the UAS’s payload was ∼1.8 kg

(housing with support structure and sensor—2× ∼720 gm, onboard computer—

140 gm, misc cables, screws etc.—approx. 200 gm) with a flight endurance of 20–25

min, which makes it capable of vertical profiling missions up to 1000 m AGL at

2 m/s.
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Chapter 4

Sensor Housing Design

Our work on sensor housing has evolved over three iterations, where we improved

the sensor housing to be more reliable and suitable for a greater range of ap-

plications related to atmospheric science. Figure 4.1 shows the evolution of the

sensor housing over three iterations. Section 4.1, 4.2 4.3 describes the housing with

detailed schematic for first, second and third iteration respectively. Each section

concludes with the overview of design goals and lessons learned.

In our first iteration, the design goals were to house the sensor with readily

available cheap materials with the least burden on the UAS flight. We learned

which configuration works better and identified the issues: the source of air needs

to be outside the UAS interference, air flow speed inside the housing needs to be

higher for indirect air draw using upwash. The best configuration found in the

first iteration was found to be configuration 6 (Section 3.2) that uses the indirect

draw of air to avoid mixing of air inside the housing.

The second iteration was focused on extending the housing outside the UAS

interference and increase the airflow. Inlet and outlet were chosen to be reducer

and expander configuration such that a very high-speed flow is achieved inside

the housing with laminar airflow at the inlet. Light materials were chosen to keep

the weight of the housing as low as possible to minimize the moment exerted on
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(a) Version 1

(b) Version 2

(c) Version 3

Figure 4.1: Evolution of Sensor Housing
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the UAS during flight. The sensor readings from this iteration of housing have

been phenomenal, allowing the data from both ascent and descent to be useful.

Since the housing was extended outside the UAS body, it tends to add disturbance

to UAS controls when flying through a turbulent region of the air.

The third iteration focuses on improving the UAS flight stability by optimizing

the mounting of the housing in terms of weight and symmetry. Additionally,

the foldability and easy mounting of the housing improves transportability and

deployability. Since the overall weight of the payload is significantly less, the flight

time of the UAS is expected to increase as well.

4.1 Sensor Housing: First iteration

During the first stage of the development of the sensor housing as shown in Fig-

ure 4.2, three placement configurations were selected: direct downwash (configura-

tion 1), downwash housing (configuration 5), and upwash housing (configuration

6). Sensor housing configurations are described in Table 3.1.

First type of housing is the direct downwash (configuration 1); this is one of

the widely used traditional mounting methods [14]. A schematic of the mounting

is shown in Figure 4.3a. This housing is designed to be mounted directly on the

arm to expose the sensor in the propeller wash for aspiration. Since the sensor

does not have any radiation shield in this configuration, the housing is split into

three components to enable 2-DoF rotation such that angle of the sensor could be

adjusted before flights as to minimize the incident solar radiation.

Second type of housing used in the first iteration is downwash housing (con-

figuration 5). The housing is built using cheap and readily available 1-inch PVC

tubes and elbow bend. Sensors inside the housing are mounted using 3D printed
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Figure 4.2: Sensor housings: first iteration

mountings, as shown in Figure 4.3a. Highly reflective bubble wrap is used to

shield against solar radiation.

Third type of housing is upwash housing with inlet pointed inside (configura-

tion 6). It should be noted that configuration 5 and configuration 6 are identically

built but mirrored in terms of placement about the UAS center. As such, what is an

inlet of the downwash housing would be the outlet of the upwash housing. This

sensor housing poses challenges when mounting to arms as there is an additional

moment acting on the joint. However, this configuration draws a laminar airflow

through the sensor and is anticipated to produce more stable sensor readings.

Based on the experiments using the first iteration of housing, we learned that:

source of air inside the UAS interference can cause fluctuations in the reading, air

flow speed inside the housing needs to be higher and more consistent to provide

reliable response time, airflow inside the downwash housing is possibly turbulent
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(a) Direct downwash housing schematic

(b) Downwash housing schematic

(c) Uwash housing schematic

Figure 4.3: Sensor housing first iteration Schematic
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Figure 4.4: Sensor housing configurations used during solar eclipse Flight

and mixing of air causes error in measurements.

These findings prompted the next design iteration: upwash housing with inlet

pointing outside UAS.

4.2 Sensor Housing: Second iteration

The sensor housing exploits the pressure deficit created on the top of a spinning

multirotor propeller to induce high speed airflows inside itself. The passive-

indirect draw of air, by positioning the housing air intake above the propeller,

creates a laminar flow at the inlet. The sensor housing is designed by following the

fluid dynamics textbook [42] to have recommended angle of expansion/reduction

(20◦ − 45◦) and radius of curvature (r/D > 0.2) for the air inlet which ensures
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(a) Schematic of the sensor housing.
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(b) Building blocks of the housing.

Figure 4.5: 1 Inlet, 2 Housing-Sensor Holder Coupler, 3 iMet XQ2 Sensor

Adapter, 4 iMet XQ2 sensor, 5 Carbon Fiber Tube, 6 Carbon Fiber Tube

Adapter, 7 L-bend, and 8 Outlet.

that the housing maintains a high speed flow throughout the housing with a low

minor loss of flow. Besides maintaining a consistent aspiration for the sensor, the

housing also shields it from incident solar radiation and other heat sources.

The sensor housing, as shown in Figure 4.5a,b, is made from seven components

(with an identical inlet and outlet). The individual parts connect using mechanical

screw-in threads, which makes it easy to assemble. The primary components of

the housing are the inlet, outlet, carbon fiber tube adapter, housing-sensor holder

coupler, sensor adapter, L-bend, and carbon-fiber tube.

• Inlet/Outlet: The Inlet/Outlet of the sensor housing is designed to have a

high cross-sectional area at the end of the inlet/outlet to maximize the airflow

rate for a given pressure difference (low pressure on top of the propeller vs,

atmospheric pressure outside the UAS body). The reducer-expander strategy

(funnel shape) allows the low-speed flow at the intake to flow at a higher

speed proportional to the reduction of the cross-sectional area according to

the continuity equation, VolumeFlowRate = Velocity ∗ Area = constant. The
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curved-horn shape of the part creates a smooth transition from a high cross-

sectional area at the intake to the narrow cross-section of the carbon-fiber

tube, which ensures laminar flow at the inlet of the housing. The radius, r, of

this curvature and gradient of this curve are chosen to be 2
3 ∗ (Tube radius)

(curvature of well rounded inlet r/D > 0.2 [42]) to minimize the loss of

airflow and to maximize the flow velocity inside the tube. For the housing

used in the thesis inlet/outlet transitions from a diameter of 104 mm to 26

mm to match the carbon fiber tube, this reduction in diameter corresponds

to a 16× increase in the speed from the inlet through the carbon-fiber tube.

• Carbon-Fiber Tube Adapter: This adapter adds on to the standard carbon-

fiber tube to make them compatible with the mechanical screw-in threads of

the other parts.

• L-bend: L-bends transition the flow in a perpendicular direction, allowing

the safe extension of the sensor housing outwards parallel to the UAS arm

while still using the propeller for air drawing. The L-bend is designed to

have smooth bend to reduce the flow loss due to the change of direction.

• Sensor Holder Adapter: This adapter is molded to fit on the sensor of

interest. Due to mechanical screw-in threads, any sensor with an appropriate

sensor adapter will be compatible with the housing. The sensor adapter, as

shown in Figure 4.5b, is designed for iMet XQ2. Most of the sensors have

strict storage requirements due to moisture affecting the quality of the sensor.

Since the adapter is easy to attach to the main housing, it can be plugged-in

right before the UAS mission, keeping the sensor safe in storage otherwise.

This adapter-type design choice allows several different sensor designs to be

compatible without modifying the rest of the housing.
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• Housing-Sensor Holder Coupler: This part provides an attachment point

for the sensor adapter to attach into the housing. A sensor plugged into

this adapter will be inside the tube aspirated by laminar airflow. Due to the

modular design, multiples of this part can be connected in series to have an

equal number of sensors taking a reading at the same time from the same

sampling airflow.

• Carbon-fiber tube: The carbon-fiber tube diameter is critically the most

important dimension, as it is the primary determinant of how much airflow

is achievable through the tube and consequently drives the dimension of all

the other parts. The Hagen–Poiseuille equation [11] dictates that the volume

flow rate through a tube is proportional to the power of fourth of its radius

which means that for the same pressure difference and length of the tube,

reducing the radius by half will reduce the volume flow rate to 1/16th the

original. The diameter of the tube also needs to be big enough to allow the

sensors to be in the center of the tube with sufficient area around it (such

that the ratio of sensor cross-section area to the cross-section area of the tube

is small) to promote good airflow. The diameter of the carbon fiber tube used

in the thesis is 26 mm.

Modularity: All the parts are designed to be modular for ease of replacement

and manufacture. The modular design of the housing allows for the addition of

multiple sensors to the housing at the same time, while the sensor adapter allows

for the replacement of any sensor.

Ease of production: The parts are designed to be modular, easily 3-D printed. All

the parts except the carbon-fiber tubes are designed to be 3-D printed to reduce the

cost of manufacturing and to make them readily reproducible and replaceable in
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the lab. Three-dimensional printing imposes additional constraints on the design;

for example, Fused Deposition Modeling (FDM) 3-D printers do not provide the

same level of strength in the vertical axis of the part and usually have difficulty

in printing slanted overhangs beyond 45
◦ angle. All the pieces are meticulously

designed to satisfy these requirements, resulting in strong, lightweight, and reliable

parts.

4.3 Sensor Housing: Third Iteration

While the second iteration of housing performed well in terms of measurement

reliability, it tends to add additional disturbance to the UAS control system when

passing through the turbulent region of the atmosphere. This turbulence is the

result of the extension of the housing and support structure outside the UAS

body. The airflow inside the second iteration of housing was very high and

largely consistent as shown in Chapter 6. However, it had a minor dependency to

atmospheric wind corresponding to the inlet pointing against or toward the wind.

The third iteration of housing is designed to alleviate/ improve upon these

challenges mentioned above. It is focused on the optimization of the design to

provide better integration with UAS with less support structure. The sensor hous-

ing is similar to the second iteration in the working principle, and the following

improvements are made in this iteration:

• Dual Outlet: Housing is modified to have two outlets such that it can be

mounted symmetrically on the arm closer to the body of the UAS as shown

in the schematic in Figure 4.7.

• Downward Facing Inlet: A downward facing inlet is used to decrease the

dependency of atmospheric wind speed on the airflow speed inside the
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Figure 4.6: Third iteration of sensor housing.

housing. The inlet also provides additional protection from precipitation and

flying through clouds.

• Reduction in Support Structure: Symmetric design of the housing allows

it to be mounted on the arm without the use of heavy support structure.

However, the housing requires inverted propeller configuration as shown in

Figure 4.6 to be mounted on top of the arm while avoiding interference with

the propeller.
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Figure 4.7: Schematic of the third iteration of sensor housing assembly
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Chapter 5

Materials and Methods

This chapter describes the bench testing in Section 5.1, experimental methods of

CLOUDMAP’2017 field campaigns in Section 5.2, and the experimental methods

to validate the effectiveness of the second iteration of sensor housing during

LAPSE-RATE’2018 in Section 5.3.

Sensor mounting configurations for three flight campaigns are described in

Section 3.4. Flight campaigns are discussed in details in Appendix A.3, and

summary of the University of Nebraska-Lincoln flight campaigns is captured in

Table 5.1.

5.1 Bench Testing : Sensor Response Time Comparison

Identifying sensor characteristics allows correction of measured data for system re-

sponse time. Comparing sensors’ performance is also critical to establish reliability

of the measurement. It is also important to have sensors with similar specifications

when we compare different sensor placement configurations in later experiments

with non-identical sensors.

Sensor housing response should be tested as flown [29]. However, to enable

the use of freezer as adiabatic chamber, the bench tests are conducted with a
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Table 5.1: Summary of the three flight campaigns

Oklahoma’2017 Nebraska’2017 Colorado’2018

CLOUDMAP yearly
flight campaign

Total solar eclipse
flight campaign

LAPSE-RATE flight
week by ISARRA

Duration 5 day 1 day 6 day
Multirotors 1 Matrice 600 Pro 1 Matrice 600 Pro 2 Matrice 600 Pro
Housing
Configura-
tions (see
Table 3.2)

1, 5 and 6 1 and 5 7

No. of flights > 20 13 170

Total flight
duration

— 215 minutes 1302 minutes

Sensors Used iMet XQ1 iMet XQ1 iMet XQ1, XQ2,
nimbus-pth

bare-minimum housing setup with a smaller footprint( an inlet, outlet, and sensor

holder) as shown in Figure 5.1 . An exhaust fan is used with similar airflow speed

performance as the housing over the sensor for aspiration.

The primary design objective of this bench test is to compare the response time

of the different sensors that are used for TH measurement inside the housing. The

sensor is subjected to a step response with a large temperature swing (approx.

40 ◦C) by keeping the aspirated sensor inside the freezer until it reaches equilibrium

and then quickly taking it out in the room temperature. The test is also designed

to show the effect of the thermal inertia of the housing system as a whole.

5.2 Experimental Methods: CLOUDMAP-Oklahoma’2017, and

Nebraska’2017

The experiments conducted in CLOUDMAP field campaign in Oklahoma are

designed to evaluate the performance of the first iteration of the housing. Experi-
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Figure 5.1: Bench testing setup of ‘Sensor Response Time Test’ showing the airflow
inside the housing to be 18.5 m/s using hot-wire anemometer.

ments range from the comparison of sensor response time as flown with ground

truth data, the effect of orientation on different sensor placement, comparison of

the three sensor placements used in different experiments.

A second campaign using the sensor housing from the first iteration is con-

ducted in Wilber, NE, USA, to observe the temperature changes occurring in the

atmosphere during a full solar eclipse. We conducted 13 flights spaced throughout

the day, with frequent flights around eclipse time. These flights demonstrate a

practical use case of multirotor UAS deployment in remote areas and also prove

that the multirotor-housing system is capable of all-day monitoring of atmosphere.
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5.3 Experimental Methods : LAPSE-RATE’2018

We designed our experiments to verify that the housing meets the design require-

ments (Chapter 3) and is capable of producing accurate and consistent measure-

ments with the third iteration of the housing. The experimental measurements

also evaluate the effect of different horizontal and vertical speeds as well as the

orientation of the UAS.

EXP 1 Airflow Inside the Housing: During a field test, the airflow speed inside the

housing is measured using a hot-wire anemometer (Extech SDL 350, FLIR

Commercial Systems Inc., Nashua, NH, USA) to establish the consistency

of the flow speed and its directional dependence on the ambient wind. We

conduct ten vertical profiles at the same location within 13 minutes with the

successive 36◦ changes in the orientation of the UAS between each ascent or

descent. An analysis of this data would establish that the housing provides

sufficient aspirations at all times, irrespective of the UAS altitude and relative

orientation of the housing with atmospheric wind.

One of the limitations of this experiment is that the atmospheric wind can

vary in direction during the experiment; however, it is considered to be fixed

in direction and speed considering the short duration of the experiment.

Another limitation is that the propeller speed changes during the flight based

on UASs control input; this fluctuation can also result in fluctuation of airflow

speed inside the housing, which is not considered in this experiment.

EXP 2 MURC Tower Calibration: Through the LAPSE-RATE field campaign, we

compare our data against the ground-truth data obtained from the MURC

tower, as shown in Figure 5.2. We perform these experiments to investigate
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(1) how accurately a sensor inside the housing captures the measurements

in-flight when compared with the ground-truth and (2) whether the precision

of the sensor is affected by external heat/radiation, resulting in measurement

drifts.

We use a similar flight pattern for both UASs (M600P1 and M600P2) by having

the UAS climb up to the MURC tower altitude of 15.2 m and hover for 10

min. We also assume that the atmospheric parameters do not change within

the horizontal distance of MURC and the UAS, as shown in Figure 5.2b.

Limitations of this experiment are that the sensors used in MURC do not

have the same specifications as the ones in UAS. The filtered response of

MURC sensors compared with raw data of UAS sensors might appear to

be less accurate/precise when looking at the numeric comparison. As such,

numeric results should be accompanied by the time-series comparison to

reveal the true nature of sensor precision or sensitivity.

EXP 3 Comparison of Flights at Different Vertical Speeds: Due to the dynamic

response characteristic and sensor response time, measurements made during

ascent and descent at the same AGL altitude are expected to have a difference.

This difference is proportional to the sensor response time and aspiration

airspeed [19]. Since the housing is expected to maintain sufficient airspeed

over the sensors at all times, the impact of the UAS vertical speed on the

sensor response time should be negligible. Some recirculation of air from

underneath the propeller is expected during hover or slow ascent/descent

speeds. If the housing samples from the recirculated air, it will result in a

measurement error or a reduction of feature details in the observation. As

such, we hypothesize that the housing would allow missions with faster
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ascending speeds, reducing the flight duration for similar altitude profiles.

We test this hypothesis over ten flights with different ascent and descent

speeds and compare the absolute error between the ascent and descent

measurements. The UAS used in our experiments is limited to a maximum

vertical speed of 5 m/s during ascent and 3 m/s during descent.

The limitations for this experiment is that we assume ascent-descent differ-

ence is only affected by UAS speed. However, microscopic turbulence due

to convective mixing in the atmosphere can also affect this reading. Also,

measured data may appear smooth when the UAS travels at a faster speed

and may not detect the micro-scale changes due to sensor response lag.

EXP 4 Inversion Layer Tests: We conduct the inversion layer tests to investigate

whether the sensor is exposed to mixed and turbulent airflow of the UAS.

Well-mixed air will not exhibit an inversion layer. If the UAS flies through an

inversion layer and the TH sensor samples from the UAS mixed air, it will

not be able to detect it. Hence, if a sensor inside the housing can detect an

inversion at the true altitude, it will validate that the housing is not sampling

from mixed air. Additionally, if there is an issue with aspiration, this will

also make it harder to identify inversion. We perform the flights through

an inversion layer (ground truth established using balloon radiosondes) at

different ascent and descent speeds. We also conduct horizontal transects (at

an altitude of 50 m) to investigate if the sensor readings are consistent when

the sensor is in the wake of the UAS.

• Vertical Profiles: We perform six flights at different ascent and descent

speeds. We place the sensors in upstream (the sensor is mounted on

end directly facing the wind) of the UAS M600P1 and downstream
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(the sensor is mounted on end facing away from the wind) of the

UAS M600P2. Identification of the inversion layer with these profiles

establishes whether the housing is sampling from the UAS’s disturbed

airflow, the effect of the orientation of the UAS relative to the wind, and

the presence of aspiration issues. Flights are also performed at different

speeds to establish the effect on the sensor measurements.

We assume the mean TH profile stays same when comparing ascent/descent.

The effect of air-mixing on TH due to UAS propeller movements is also

assumed to be negligible.

• Horizontal Profiles: These experiments investigate the effect of ambient

wind and the UAS’s relative orientation on the sensor measurements,

especially for horizontal profiles. Our experiments were conducted such

that the sensor is exposed either upstream (sensor on the leading front

of the UAS) or downstream (sensor mounted on the trailing end of the

UAS motion).

It is assumed that in the nocturnal boundary layer and without the

presence of convective mixing, TH profile at a fixed altitude will be

iso-thermal for the case of small horizontal movements.

• Comparison with Radiosonde Balloon: We use two radiosonde bal-

loons launched one hour apart as our source of ground truth for the

inversion profiles. The release of the first balloon coincides with the

first vertical profile, while the second balloon is launched at the start

of the horizontal profiles. We use the data from the radiosonde for

comparison against the ascent data recorded by the UAS to assess how

well it captures an inversion.
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(a) Ten minutes of hover flight calibration
of the UASs (M600P1 and M600P2) with
MURC (Mobile UAS Research Collabora-
tory).

(b) Horizontal placement of UAS and
MURC as shown with latitude in y-axis
and longitude in x-axis. Image Courtesy of
Google Map

Figure 5.2: MURC tower calibration.
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Chapter 6

Results

This chapter describes the result from the bench tests in Section 6.1, CFD simulation

results are discussed in Section 6.2, key results from CLOUDMAP’2017 field

campaigns are described in Section 6.3, and results from LAPSE-RATE’2018 field

campaigns are detailed in Section 6.4.

6.1 Bench Test: Sensor Response Time Comparison

Sensor response time test as shown in Figure 6.1 shows that the response from both

the commercially available sensor iMet-XQ2 and lab-built sensor nimbus-pth per-

forms very similar. As such, response time of nimbus-pth is same as iMet-XQ2

manufacturer’s specifications of 1 s. However, the overall response time for both

sensors appears slightly sluggish (≈ 0.5 seconds slower). The thermal mass of

sensor housing has an inherent response delay and could contribute to the slow re-

sponses. However, in real life deployment of the housing, such a high-temperature

swing in a very short period of time is not expected, and as such, the sensor hous-

ing might not impact the overall response time of the system. Further experiments

can be done to verify the response time constant of the housing as flown given the

availability of large adiabatic chambers.
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Figure 6.1: Temperature step response test for iMet-XQ2 and nimbus-pth sensors.
The sensor is allowed to sit inside the freezer until reach steady equilibrium
temperature and then quickly taken outside with inlet pointing upward to allow
room temperature air to pass through the setup.

6.2 Air Flow Inside the Housing : CFD Simulation

Airflow inside the housing is tested through SolidWorks CFD simulations using

similar propeller such as the one used on the UAS. Simulation results presented in

Figure 6.2 shows the source of airflow is far removed from the UAS turbulence.

The images also show that there is some re-circulation of air inside the housing

during hover. The air around UAS body is most turbulent during the descent and

hence is required to be sourced from outside UAS body. Ascent/descent speed

of the UAS is set to be 2 m/s. In the simulation, a speed of ≈ 4 m/s of air flow
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is achieved when the propeller speed is set to 6000 RPM (typical UAS propeller

speed). However, the airflow inside the second iteration of housing is found to

be 12-14 m/s during actual flight. The discrepancy in speed is possibly due to

the shape mismatch of the propeller used in the simulation when compared to

the actual UAS. Further research with pressure sensor mounted at the inlet and

outlet of the physical sensor housing can be used to identify the discrepancies

with simulated sensor housing.

6.3 Results from CLOUDMAP - Oklahoma and Nebraska’2017

Field Campaign

Due to the sensor response lag, a difference of reading between ascent and descent

is expected. Figure 6.3 shows a comparison of ascent and descent for all three

sensor configurations in the first iteration of housing.

Direct downwash housing seems to have the lowest error (ascent-descent)

among the sensor configurations. However, the noise in data indicates uncertainty

in aspiration. Both downwash housing and upwash housing shows signs of

insufficient aspiration. Since the downwash housing has high airflow speed inside

the housing, the underlying reason could be pulling in mixed air inside the housing.

Upwash housing, on the other hand, could be affected by insufficient aspiration

during descent as it lies in the wake of UAS.

Figure 6.4 shows the effect of the solar eclipse on the atmospheric boundary

layer. During the total eclipse, the temperature near the ground decreases dramati-

cally and causes inversion in the temperature profile. Progression of temperature

throughout the day is shown in Figure 6.5.
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(a) Ascent

(b) Hover

(c) Descent

Figure 6.2: CFD Simulation of a simplified UAS with the sensor housing. As-
cent/descent speed is 2m/s. Colors in the image indicate airspeed with respect
to horizontal axis with blue and red being the lowest speed and highest speed in
positive horizontal axis.
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(a) Direct downwash housing

(b) Downwash housing

(c) Upwash housing

Figure 6.3: Comparison of ascent (up) and descent (down) by evaluating the
difference at similar altitude. Results from Houston et al. [20].
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(a) Flight before total eclipse

(b) Flight during total solar eclipse

(c) Flight after total eclipse

Figure 6.4: Temperature vs Altitude effect of solar eclipse where solar eclipse
causes inversion near surface.
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Figure 6.5: Temperature box plot throughout the day. Total solar eclipse happened
during flight 5.

6.4 Results from LAPSE-RATE Field Campaign (Housing Ver-

sion no. 2)

The results are presented in sections same as that in the Experimental Methods

(Section 5.3). We note that, for all the following analysis, the data from MURC and

radiosonde are filtered by the manufacturers’ proprietary algorithms. However,

the data from the UAS is not filtered or corrected for sensor response lag. The

thesis focuses on capturing the impact of sensor housing on the observations/data

collection. Filtering could wash out the difference in post-processing depending
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upon the details available in the observation. If the raw data does not capture the

details accurately, post-process filtering would be impacted as well.

Assuming the ascent and descent profiles are identical at the same location

within a reasonably short time-frame, they would appear symmetric/mirrored

around the corrected profile if the sensor data is not corrected for sensor response

lag. We do not perform such corrections for the data presented in this thesis;

standard post-processing can take them into account [29].

6.4.1 (EXP 1) Airflow inside the Housing

This subsection describes the results from experiments described in EXP 1 of

Section 5.3. Figure 6.6 shows the actual airflow speed inside the housing during

flights, as measured by an anemometer. The box plots show the distribution of

flow speed for ten flights with different relative orientations of atmospheric wind

over altitudes ranging from 5 m to 120 m above ground. As seen from the plots,

the mean flow speed inside the housing is 12.45 m/s (with a variance of 1.25 m/s),

which is roughly 2.5× the required aspiration for the iMet sensors used in the

thesis.

Although the housing is designed to have smooth flow at the inlet, high

aspiration airspeed also indicates presence of turbulent airflow inside the small

diameter tube (Reynolds number of u 20604).

6.4.2 (EXP 2) MURC Tower Calibration

This subsection describes the results from experiments described in EXP 2 of

Section 5.3. Figure 6.7 shows a time-series of the temperature (T), and humidity

(RH) sensor readings for a 10 min hover along with the MURC tower readings.

Since the sampling rate and the timestamp of data-recording are not the same
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Figure 6.6: The plot shows sensitivity in the airflow speed inside the housing in
the presence of wind for ten consecutive flights at different orientations of the UAS
from the north at a ground wind speed of 6 mph from the northeast. The box plot
captures the 25th to the 75th percentile of data, while the central red line indicates
the median. The black whiskers and the red plus signs indicate the extreme range
and outliers respectively.

for all the sensors and MURC, all of the measurements from the UAS have been

resampled linearly according to the time-stamp of the MURC data (with the

assumption that the MURC and UAS clocks have no relative offset among them).

The time series shows that sensors used on the UAS are more sensitive to

changes than those on the MURC and that the resolution of the temperature

sensors are 10× of the MURC. A visual inspection also reveals that the sensors

show a similar trend with MURC but with an artificial response time offset (MURC

lags ∼40 s for the temperature sensors and ∼9 s for the humidity sensors).

If the time stamp on all the devices are accurate and synced using GPS, this

could be a result of spatial variation where the horizontal wind carried a higher

temperature air from a different place through these devices at different times.

Alternatively, more likely due to the ill-matched time offset for temperature and

humidity, the sensor response time of MURC could be higher, causing it to lag,
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Figure 6.7: The Temperature (T) and Humidity (RH) time series of the MURC
tower and other sensor readings for the 10 min of hover of the UAS at the MURC
tower altitude (15.2 m): Only the data from MURC is filtered and corrected for
sensor response.

especially if it is aspirated by the atmospheric wind with an insufficient speed

which may increase the response time. Another reason for the time offset could

be the fact that a smoothing algorithm is in place for MURC with large moving

average window. Another important thing to note is the humidity sensor response

of P2Nimbus1 and P2Nimbus2. These two sensors, if plotted separately, show

a similar trend as that of other sensors, but the sensitivity of the sensor appears

to be very low and hence appears as a straight line when plotted together with

the others. We see this effect throughout all the experiments where the humidity

measurements of nimbus-pth are usually less sensitive to changes and could be

at an offset with standard sensors. The data gathered from these sensors would

still provide valid insights, and the effect could be corrected by tuning through the

analog-to-digital conversion process for these sensors.

The absolute errors are within the bound of sensor uncertainty, as shown
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Figure 6.8: A comparison of the sensor readings with the MURC tower: The data
presented here summarizes 10 minutes of hover at the MURC tower altitude (15.2
m) as presented in Figure 6.7. (S1—P1XQ1 (housing), S2—P1XQ2 (housing), S3—
P2XQ2 (housing), S4—P2Nimbus1 (no housing), and S5—P2Nimbus2 (housing)).

Table 6.1: The key statistics for the MURC calibration error (MURC − Sensor).

Sensor
Temperature (◦C) Humidity (%)

Mean Variance RMS Mean Variance RMS

P1XQ1 0.32 0.064 0.41 0.51 1.324 1.26

P1XQ2 0.05 0.043 0.21 1.51 1.546 1.96

P2XQ2 0.07 0.048 0.23 2.70 2.266 3.09

P2Nimbus1 −0.22 0.075 0.35 −4.56 3.915 4.97

P2Nimbus2 0.13 0.059 0.28 −4.58 3.870 4.99

in the box plot in Figure 6.8, for sensors in the housing, whereas the sensor

without housing (P2Nimbus1) has a higher range of errors with an increased

variation in reading. The primary source of error in both figures is the difference

in resolution and the artificial time offset, as discussed above. The key statistics of

the measurement errors are presented in Table 6.1.
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6.4.3 (EXP 3) Comparison of Flights at Different Vertical Speeds

This subsection describes the results from experiments described in EXP 3 of

Section 5.3. This section presents the results from different ascent/descent speed

combinations to find the ascent/descent speed pair that works best for the housing.

Since we do not capture all ten profiles simultaneously and the variability in speed

causes unequal data points among profiles, we plot TH against the altitude instead

of plotting them as a time-series as we did for the MURC comparison. Figure 6.9

shows the temperature and humidity plotted against the altitude for five different

combinations of ascent and descent speeds. Each row of the plot represents a

different sensor as identified on the y-axis label, while the legend on the bottom

of each column specifies the order in which we performed the flights. The title

of each column of the plot represents the ascent and descent speeds. This figure

also provides the grounds for comparison of the housed sensor with a non-housed

sensor since P1XQ2 and P1Nimbus2 were inside the housing while P1Nimbus1 was

mounted under the body of the UAS without housing. Although we performed the

actual flight between 0–150 m AGL, both the ascent and descent data were trimmed

to be 10–148 m and resampled at each meter of altitude to facilitate a comparison

of the ascent vs. descent. The reason for trimming is to avoid a comparison of

noisy data at the ground level and also to reduce the artificial inversion effect

at the start and end of the flight due to the sensor’s dynamic response [19]. In

Figure 6.9b, the humidity sensor on P1Nimbus1 and P2Nimbus2 seems to have

an offset of ∼20% and, similar to the comparison with MURC, appears to be less

sensitive to changes in the atmosphere when compared with P1XQ2. Despite the

offset and sensitivity, the sensors still provide relevant features for a comparison

based on the vertical speed. Due to the dynamic sensor response characteristic
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and corresponding time constant, a finite amount of difference is expected when

we subtract the temperature profiles of the descent from the ascent (∆T). This

difference is expected to increase with the speed of ascent/descent and to decrease

with the aspiration airspeed [19].

As seen in Figure 6.10a, sensors inside the housing are not affected by the

vertical speed as much as the sensor without it. The ∆T on the housed sensor,

which is sufficiently aspirated, increases significantly slower compared to the non-

housed sensor as vertical speed increases. This increase in error is merely an artifact

of the sensor response time constant, which prevents the sensor from catching up

to larger step changes in temperature. The increase in the ascent/descent speed

appears to add additional burden on the “effective” sensor response time, which

would cap the maximum vertical velocity of the UAS for an accurate profile.

However, the sensor inside the housing can exploit the maximum UAS capability

for speed without significantly changing the response time.

Another interesting feature to note is that, when the descent is slower than

the ascent, the difference appears to be lower than that of same ascent/descent

speed (since a lower speed will produce values closer to the actual value). There

is also an interesting trend in the humidity box plots in Figure 6.10b for P1XQ2:

The range of absolute error decreases (while the mean error is still under 2%) with

the increase in vertical speed. This decrease is the result of sensors not picking up

the fine-scale changes in the atmosphere at faster speeds, making the data appear

smoothed out. A comparison of the sensors shows an increase in the humidity

error (ascent-descent) when the sensor is non-housed, which exacerbate as the

vertical speed increases. It should be noted that the humidity sensor response time

is dependent on the temperature, as specified in Table 3.2.
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Figure 6.9: The plot shows the ascent (a) and descent (b) temperatures against the
altitude for 10 consecutive flights conducted over a period of 60 min (7/18/2018

7:21 pm UTC–8:20 pm UTC) at different “a” and “d” speeds mentioned in the
title of each subplot. Multiple flights at the same speed are grouped. The colored
legend under the plot indicates the order in which the flight was performed. The
sky was slightly cloudy with cumulonimbus clouds, and the ground wind was 4–5

m/s from the NW. The data presented in this plot is not filtered or corrected for
sensor response characteristics.
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Figure 6.10: The box plot summarizes Figure 6.9 by showing the absolute (ascent −
descent) temperature and humidity differences for 10 consecutive flights conducted
over a period of 60 min (7/18/2018 7:21 pm UTC–8:20 pm UTC) at different ascent
(a) and descent (b) speeds mentioned in the title of each subplot. Multiple flights
at the same speed are grouped and plotted together. The sky was mostly sunny
with cumulonimbus clouds, and the ground wind was 4–5 m/s from the NW.
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6.4.4 (EXP 4) Inversion Layer Tests

This subsection describes the results from experiments described in EXP 4 of

Section 5.3. Figure 6.11 represents vertical inversion layer flights at different

speeds of ascent and descent, as indicated in the corresponding plots. The figure

also features radiosonde data for the same altitude range that was launched a

minute before the first UAS flight and 36 min after the sixth UAS flight. For this

experiment, we consider only the sensors inside the housing. We note that the

relative humidity data for P1XQ2 had to be discarded due to a glitch causing the

sensor to be saturated at 100% before the inversion layer tests and hence is replaced

by P1XQ1 relative humidity observations. The relative humidity for radiosonde is

calculated from the dew point temperature (Td) and air temperature (T) using the

linear estimation formula as described in [25] to be RH ≈ 100 − 5 ∗ (T − Td).

The temperature profiles in Figure 6.11a demonstrate the ability to detect the

inversion at similar altitudes as that of the radiosonde balloon deployed by NOAA.

This confirms that sensor housing is not sampling from a disturbed airflow since

it would fail to detect the inversion otherwise. The performance of the sensor

upstream (P1XQ2) seems to be better than that of downstream (P2XQ2) as the

latter seems slightly warmer, which increases as the profile speed increases. These

deviations could mean that, even though air is sourced far from the body, a sensor

downstream from the wind could be exposed to waste heat from the UAS that is

carried by the atmospheric wind (as discussed in Section 3.2). The effect is more

significant during ascent if the ascent speed is significantly higher than the wind

speed as the resultant wind vector points more towards the air source of the sensor

located downstream. Consequently, in such cases, the descent profile matches

more closely with the inversion profile.



www.manaraa.com

60

12 12.5 13

12:59:01 UTC

a (0.5 m/s)

d (-0.5 m/s)

a (0.5 m/s)

d (-0.5 m/s)

12 12.5 13

13:07:41 UTC

a (1 m/s)

d (-1 m/s)

a (1 m/s)

d (-1 m/s)

12 12.5 13

T (
°
C) 

13:13:07 UTC

a (2 m/s)

d (-1.5 m/s)

a (2 m/s)

d (-1.5 m/s)

12 12.5 13

13:17:19 UTC

a (2.5 m/s)

d (-2.5 m/s)

a (2.5 m/s)

d (-2.5 m/s)

12 12.5

13:22:09 UTC

a (2.5 m/s)

d (-2 m/s)

a (2.5 m/s)

d (-2.5 m/s)

12.5 13

13:36:26 UTC

a (4.5 m/s)

d (-2 m/s)

a (4 m/s)

d (-2 m/s)

13 13.5
0

10

20

30

40

50

60

70

80

90

100

A
G

L
 (

m
) 

12:58:00 UTC

RadioSonde

13 13.5 14

14:12:00 UTC

RadioSonde

(a) Temperature (T). The blue lines represent P1XQ2, and the orange lines represent P2XQ2.

90 95 100

12:59:01 UTC

a (0.5 m/s)

d (-0.5 m/s)

a (0.5 m/s)

d (-0.5 m/s)

90 95 100

13:07:41 UTC

a (1 m/s)

d (-1 m/s)

a (1 m/s)

d (-1 m/s)

90 95 100

RH (%) 

13:13:07 UTC

a (2 m/s)

d (-1.5 m/s)

a (2 m/s)

d (-1.5 m/s)

90 95 100

13:17:19 UTC

a (2.5 m/s)

d (-2.5 m/s)

a (2.5 m/s)

d (-2.5 m/s)

90 95 100

13:22:09 UTC

a (2.5 m/s)

d (-2 m/s)

a (2.5 m/s)

d (-2.5 m/s)

90 95

13:36:26 UTC

a (4.5 m/s)

d (-2 m/s)

a (4 m/s)

d (-2 m/s)

95 100
0

10

20

30

40

50

60

70

80

90

100

A
G

L
 (

m
) 

12:58:00 UTC

RadioSonde

94 96 98

14:12:00 UTC

RadioSonde

(b) Humidity (RH). The blue lines represent P1XQ1, and the orange lines represent P2XQ2.

Figure 6.11: The plot shows two radiosonde flights (filtered and corrected) and
six different flights of the UAS (not filtered/corrected) at different speeds in a
inversion layer. The surface wind was 2 m/s from 290–308

◦ relative to north and
with a partly cloudy sky. The P1XQ2 sensor is upstream, while the P1XQ1 and
P2XQ2 sensors are downstream from the UAS with respect to wind.
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The humidity profiles in Figure 6.11b match closely with that of radiosonde

at slower vertical speeds. It should be noted that the operating temperature for

these missions was low, which decreases the response time of the P2XQ2 humidity

sensor. The slow sensor response time combined with the high vertical speed

smooths out the data, and the humidity sensor loses the ability to identify a

fine-scale inversion.

We performed four consecutive horizontal transects at three different speeds.

The direction of each of the four transects along with the direction of air flow

inside the housing and surface wind is shown in Figure 6.12. The sensor, P1XQ2,

is downstream for transects 1 and 3 and upstream for transects 2 and 4 for UAS

1 (M600P1). The opposite configuration is used for P1XQ1. The sensor on UAS

2 is at a right angle with the direction of movement and hence not subjected to

upstream or downstream UAS flow.

Figure 6.13 shows the time series for transects at three different horizontal

speeds. For the temperature plots, a sensor that is not subjected to upstream

or downstream flow (dashed line, P2XQ2) holds a fairly constant value over

both directions of the transect. On the other hand, the sensor subjected to the

downstream of UAS (solid line, transects 1 and 3) appears a bit warmer than the

sensor placed upstream (solid line, transects 2 and 4). This finding agrees with that

of the vertical profiles for the downstream sensors. The effect of sensor warming

is more obvious at higher horizontal speeds. The statistics presented in Table 6.2

show an increase in the standard deviation for M600P1 in agreement with the

above discussion.

For the relative humidity plots, surprisingly, the sensor subjected to up-

stream/downstream flow appears more consistent than the sensor not subjected

to either stream. Although it is not certain as to what causes this deviation, all the
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Figure 6.12: The figure shows the air flow, surface wind, and transect direction dur-
ing each of the four transect flights conducted during each of the three horizontal
flights through the inversion layer.

Table 6.2: Statistics for the measurements presented in Figure 6.13.

UAS Platform Horizontal Speed
Temperature (◦C) Humidity (%)

Mean Std Mean Std

M600 P1

2 12.90 0.08 91.03 1.09

5 13.44 0.06 88.71 0.98

10 14.11 0.15 85.04 1.30

M600 P2

2 13.02 0.06 93.46 1.20

5 13.59 0.05 91.59 1.41

10 14.5 0.06 83.86 1.37

fluctuations in TH readings are still within the sensor uncertainty.
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Figure 6.13: The plot shows three different horizontal “transect” flights at different
horizontal (H) speeds at 50 m AGL. The surface wind was 2 m/s from 290–308

◦

relative to the north and the sky is partly cloudy. The solid line plots indicate
data from M600P1, and the dashed lines indicate data from the M600P2. The blue
(M600 P1) and light blue (M600 P2) scatter dots indicate transects 1 and 3, while
the red (M600 P1) and orange (M600 P2) are transects 2 and 4. Figure 6.12 shows
the direction of air flow inside the housing, the surface wind, and the horizontal
transects for each of the transects for both UASs. The data shown here is not
filtered/corrected for sensor response characteristics.
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Chapter 7

Discussion

This chapter summarizes the results in Chapter 6 in sections that answers the

research questions: is housing better than not having a housing (Section 7.1),

what is the effect of UAS orientation (relative to wind and sun) on the housing

(Section 7.2), what are effects of housing on UAS (Section 7.3), and what are

the ranges of operation successfully tested for the UAS sensor housing system

(Section 7.4).

7.1 Housing vs. No Housing

A sensor without housing on a UAS has an increased effective sensor response

time, as seen in the Figure 6.10, which increases with the vertical speed of the

UAS. A sensor with higher effective response time is incapable of resolving fine-

scale changes and causes an undesirable “smoothing” of the data (Figure 6.9a).

According to Figure 6.8, even for stationary purposes such as hovering in one

place, a sensor without housing performs worse than a sensor inside the housing.

A sensor housing such as the one presented in this thesis removes a lot of the

uncertainty, as it always produces sufficient aspiration (Figure 6.6), is capable of

operating at higher vertical and horizontal speeds (Figures 6.10 and 6.13), and
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can detect inversion with a comparable performance as a radiosonde balloon

(Figure 6.11).

Another significant advantage of housing is its ability to reduce uncertainty

in the descent data. Sensors located inside the housing demonstrate similar

descent and ascent profiles in both well-mixed air (Figure 6.9) and through an

inversion layer (Figure 6.11). These conclusions for the temperature and humidity

sensors hold true even when comparing sensors that have similar specifications

(such as P1Nimbus1 and P1Nimbus2). The observable difference between the

ascent/descent for sensors inside the housing seen in all the plots is a result of

dynamic sensor response characteristics and could potentially be corrected if the

sensor characteristics are known. To the best of the authors’ knowledge, to date,

no other housing for multirotors has demonstrated the capability of measuring

useful data in both ascent and descent.

7.2 Effect of UAS Orientation on the Housing

UAS Orientation Relative to Atmospheric Wind: The speed of the aspirating

airflow inside the housing varies very little with the orientation of the UAS

(Figure 6.6). At a lower speed of operation, a sensor housing downstream or

upstream measures values unaffected by the UAS, while slight deviations could be

seen when the sensor is located downstream from the UAS at a higher horizontal

speed of operation (Figure 6.13). A similar effect could be observed when the

sensor is downstream and the ascent speed of UAS is significantly higher than

the horizontal wind speed: The ascent appears slightly warmer, which could be

contributed by the waste heat of the UAS (Figure 6.11).

It should be noted that, in both cases, the increase is not significant and is
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within the uncertainty bounds of the sensors. However, further experiments would

be required to establish the effect of the waste heat on the measurements. This

could also indicate that the inlet of the sensor housing should be placed even

higher to avoid the warmer flow. Alternatively, a wind sensor can be used to

reorient the UAS when the desired speed of operations is higher.

UAS Orientation Relative to Sun: The primary difference between cloudy and

sunny condition will be the incident angle and intensity of solar radiation in the

housing. Sensor probes are placed inside the housing, which protects it from

incident solar radiation. The housing is made with very thin carbon-fiber material

with a very low thermal mass; additionally, all parts are painted with reflective

white paint, and solar reflective tape has been used on the carbon fiber tube. With

the high aspirating air flow, highly reflective surface, and low thermal mass, the

sensor housing is capable of reliable measurements in both cloudy and sunny

conditions in any UAS orientation relative to the sun.

7.3 Effect of Housing on the UAS

The UAS used in this thesis is capable of a maximum 5 m/s in ascent, 3 m/s in

descent, and 10 m/s in the horizontal direction when used in automatic missions.

A stricter limit on the descent is because, as the UAS descends into the turbulent

downwash, it may start oscillating uncontrollably [12], resulting in a loss of control

or crash. Due to the nature of the housing presented here, it extends out 0.7 m (2.6

times the propeller radius) away from the center of rotor. This requires a second

housing to be mounted on the opposite side as well to balance the center of gravity.

This comes at the cost of the decreased sensitivity of the UAS in the roll/pitch axis

(mounting axis). Traditionally, this sensitivity could be improved by tuning the
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flight control parameters. However, that approach is not explored in this thesis to

keep the sensor housing generic to commercially available UASs.

Although the structure is quite large, it is very lightweight. There was no loss

of control during the 21.7 h of flight time recorded in 170 flights by two vehicles

during the LAPSE-RATE campaign. However, for some of the flights, when the

vehicle went through turbulent regions of the atmosphere, there was noticeable

wobbling in the roll axis (the mounting axis), lasting up to 30 s. Although rare

(8 out of 170 flights), the effect would appear more on the descent than on the

ascent as the UAS descent on the turbulent airfield created by its propeller. The

onset of this oscillation can be detected early on using an onboard computer, as

described by Reference [7] and can be countered by slowing down the multirotor

speed when passing through turbulent regions of the atmosphere.

Considering these limitations of the UAS, even though the housing is proven to

be capable of operating at higher speeds (as seen in the results and the preceding

discussion), a near-optimal range of operation would be 0.5–3 m/s for the ascent,

0.5–2 m/s for the descent, and 0.5–5 m/s for the horizontal transect.

7.4 UAS Ranges of Operation

Typical ABL profiles are up to 2 km, and the Federal Aviation Administration

(FAA, USA) certification of authorization for LAPSE-RATE was valid for up to a

1 km flight. However, software restrictions on the autopilot of UASs limited our

profiles to 500 m AGL. The sensor housing is capable of reliable measurements at

various temperature/altitude ranges. Data has been collected in different ranges

of temperature in various weather conditions and times of the day. To demonstrate

the altitude and temperature range capability, additional data collected during the
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Figure 7.1: The first subplot shows unfiltered temperature data collected from 10

m–500 m of a well-mixed atmosphere at noon with a ground wind of 1.6 m/s with
a 5 m/s gust.

LAPSE-RATE campaign is presented in Figure 7.1. The first subplot in Figure 7.1

shows a temperature profile up to 500 m with a temperature difference of ∼5 ◦C

between 10–500 meter altitudes at noon when the atmosphere is well-mixed; the

second subplot shows inversion detection for a flight up to 300 m before sunrise.

Also, the data presented in the Results section such as Figures 6.9 and 6.11 has a

15 ◦C difference in the operating temperature.
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Chapter 8

Conclusions and Future Work

In this thesis, we have presented the design and evaluation of a novel sensor

housing that allows multirotors to host atmospheric sensors over various profiling

missions reliably. The sensor housing features:

• Consistent airflow (12.5± 1.11 m s−1) to facilitate fast and precise sensor

response time.

• Low standard deviation of measurement (0.06 ◦C and 1.2 % RH) during

horizontal transect in iso-thermal layer.

• Low thermal mass and better radiation shielding to reduce radiation error

and sensor housing response time constant.

• Provides reliably consistent measurement in both UAS ascent and descent.

• Samples air from a source far removed from UAS turbulence and undesired

mixing.

• Is independent of orientation about wind or sun.

• Protects the sensor from artificial heat sources and prevents artificial wet-

bulbing.
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• Foldable, modular design for fast field deployment and easy replacement.

• Compatible with other sensors with aspiration requirements similar to TH

sensors.

We evaluated the nature of the airflow and empirically showed the effectiveness

of the housing in maintaining a strong airflow (≥10 m/s) invariant to ambient

wind. Numerous field tests conducted at three flight campaigns: CLOUDMAP-

Oklhoma’2017, CLOUDMAP-Nebraska’2017, and LAPSE-RATE’2018 flight week

which demonstrated the ability of the housing design to precisely capture varia-

tions in atmospheric observations, while providing reliable sensor performance

during high-speed ascent and descent.

The findings in this thesis are also supported by the multirotor/fixed wing UAS

platform TH data comparisons of Barbieri et al. [3]. The sensor housing described

in this thesis used in University of Nebraska-Lincoln multirotors resulted in most

accurate and precise readings.

Future Work

Sensor Housing Future Improvements: The sensor housing, as proposed, shows

the ability to maintain a sufficiently high aspiration at all times. However, some

variability in the speed of aspiration still exists as a function of varying rotor

speeds (and possibly ambient wind). If a sensor’s response time is highly sensitive

to the variation in airspeed, active control of the airspeed might be required.

Alternatively, design changes could be made to add passive gills that will resist

sudden fluctuations in speed inside the housing.

Descent profiles using traditional methods are unreliable compared to an ascent

profile due to the turbulent mixing of air by the UAS while descending. While
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our sensor housing can obtain reliable descent data that is within the sensors’

uncertainty, some features in the data are still not fully captured, as evident from

Figure 6.9. This would indicate that some turbulently mixed air is still passing

through the housing inlet. Extending the housing even farther out would reduce

the effect of mixed air further and would reveal more features in the observations.

We note that any extension of the sensor housing would burden the flight controller

as well and should be done according to the UAS’s safety limit.

Sensor Redundancy: The sensor housing shields the sensor from external heat

sources, but when located downstream from a heat source (such as the waste heat

of the UAS), the effect is usually unavoidable. For the cases encountered in our

experiments, the effect is not significant. If the UAS is equipped with sensors

in the opposite arm, this could be solved in two ways: (1) a reorientation of the

UAS (using data from an onboard anemometer) or (2) sensor fusion using the

redundant data based on the wind/UAS speed and direction.

UAS Safety Maneuvers: The detection of turbulence and oscillations based on

real-time data could allow the UAS to perform preprogrammed safe maneuvers to

avoid a loss of control. This would allow for the safer operation of UASs at higher

speeds, making the sampling process significantly faster.

Correction of Measured Data: The correction of sensor data can be complex

without accurately characterizing the sensors. The sensor response time of the

iMet XQ, for example, is based on the step response of the sensor while subjected

to an oil bath. The step response information alone is not enough to correct for the

dynamic response of the system. A robust method to characterize the dynamic

response of the UAS/housing/sensor system would be needed to account for the

deviation or to make any corrections since the system response time would be

different for just the sensor vs. a sensor inside the housing as flown [29].
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Another challenge in correcting the sensor data (such as the humidity) is the

variability in response time based on temperature which should be taken into

account for the correction routine. Additionally, as noted in previous literature,

multirotors have a dispersion effect, and recirculating air can affect the measure-

ment by changing the actual observation level. We suspect this will be more

apparent in lower ascent/descent speeds as the air has a higher chance of being

recirculated. These effects can be mitigated further by extending the air inlet even

farther out from the body.
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Appendix A

Description of Flight Campaigns

A.1 Oklahoma 2017

CLOUD-MAP Summer Field Campaigns in Oklahoma. 71 participants from four

different universities participated in a five day long collaborative flight schedule to

evaluate the performance of the systems developed and to collectively measure at-

mospheric phenomena. Experiments were conducted in three sites near Oklahoma

State University: OSU Unmanned Aircraft Flight Station, Marena Mesonet site,

Department of Energy Southern Great Plains Atmospheric Radiation Measurement

site. More than 500 flights of fixed wing and multirotor UAS accumulated about

70 hours of flight time.

A.2 Nebraska 2017

Measurements from the total solar eclipse in Wilber, Nebraska. Flights were

conducted throughout the day in collaboration with Oklahoma State University.

There was in total 26 Flights totalling up to 430 minutes in total flight time.

Additionally, there were 16 NOAA radiosonde balloon launches to be used as

reference for the measurements of multirotors.



www.manaraa.com

81

Figure A.1: University of Nebraska-Lincoln Team’ 2017

Figure A.2: Teams participating from four university during CLOUDMAP flight
campaign’2017.

3/21/2019 Google Maps
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Imagery ©2019 Google, Map data ©2019 Google 200 ft 

Figure A.3: CLOUDMAP Flight Campaign Map, Oklahoma.
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Figure A.4: University of Nebraska-Lincoln team for Solar Eclipse Campaign

Figure A.5: Multirotor in-flight collecting TH data seconds before the total solar
eclipse.
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Figure A.6: Launching of Radiosonde Balloon For TH data observations

3/21/2019 Google Maps
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Eclipse 2017, Wilber, NE, USA

Figure A.7: Location of Solar eclipse campaign at Wilber, NE.
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Figure A.8: University of Nebraska-Lincoln Team for LAPSE-RATE flight camp-
gain.

A.3 Colorado 2018

Lower Atmospheric Process Studies at Elevation - a Remotely-piloted Aircraft

Team Experiment (LAPSE-RATE) flight campaign in San Luis Valley of Colorado

during was organized by ISARRA conference committee. The San Luis Valley is

a high-altitude valley surrounded by tall mountain peaks and is of great interest

to atmospheric science community. The valley provides sampling opportunities

related to boundary layer structure and development and its connection to complex

terrain, convective initiation, aerosol properties, surface fluxes and more.

The field campaign spanned six days from 14-19th July, 2018. More than 100

participants from 13 university, government, and industry teams conducted flights

with 35 UAS. Fixed and multirotor UASs combined, 1287 flights for about total of

260 hours were conducted by remote pilots.
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Figure A.9: Multirotor inflight with the sensor housing to collect TH observations
minutes before dawn.
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Figure A.10: LAPSE-RATE’2018 flight week map.
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